Package: hrqglas 1.1.0

hrqglas: Group Variable Selection for Quantile and Robust Mean Regression

A program that conducts group variable selection for quantile and robust mean regression (Sherwood and Li, 2022). The group lasso penalty (Yuan and Lin, 2006) is used for group-wise variable selection. Both of the quantile and mean regression models are based on the Huber loss. Specifically, with the tuning parameter in the Huber loss approaching to 0, the quantile check function can be approximated by the Huber loss for the median and the tilted version of Huber loss at other quantiles. Such approximation provides computational efficiency and stability, and has also been shown to be statistical consistent.

Authors:Shaobo Li [aut, cre], Ben Sherwood [aut]

hrqglas_1.1.0.tar.gz
hrqglas_1.1.0.zip(r-4.5)hrqglas_1.1.0.zip(r-4.4)hrqglas_1.1.0.zip(r-4.3)
hrqglas_1.1.0.tgz(r-4.5-x86_64)hrqglas_1.1.0.tgz(r-4.5-arm64)hrqglas_1.1.0.tgz(r-4.4-x86_64)hrqglas_1.1.0.tgz(r-4.4-arm64)hrqglas_1.1.0.tgz(r-4.3-x86_64)hrqglas_1.1.0.tgz(r-4.3-arm64)
hrqglas_1.1.0.tar.gz(r-4.5-noble)hrqglas_1.1.0.tar.gz(r-4.4-noble)
hrqglas_1.1.0.tgz(r-4.4-emscripten)hrqglas_1.1.0.tgz(r-4.3-emscripten)
hrqglas.pdf |hrqglas.html
hrqglas/json (API)

# Install 'hrqglas' in R:
install.packages('hrqglas', repos = c('https://shaobo-li.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/shaobo-li/hrqglas/issues

On CRAN:

Conda:

quantileregressionvariable-selection

4.26 score 3 stars 4 packages 8 scripts 441 downloads 2 exports 8 dependencies

Last updated 2 years agofrom:94994e98e5. Checks:1 OK, 11 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 29 2025
R-4.5-win-x86_64NOTEMar 29 2025
R-4.5-mac-x86_64NOTEMar 29 2025
R-4.5-mac-aarch64NOTEMar 29 2025
R-4.5-linux-x86_64NOTEMar 29 2025
R-4.4-win-x86_64NOTEMar 29 2025
R-4.4-mac-x86_64NOTEMar 29 2025
R-4.4-mac-aarch64NOTEMar 29 2025
R-4.4-linux-x86_64NOTEMar 29 2025
R-4.3-win-x86_64NOTEMar 29 2025
R-4.3-mac-x86_64NOTEMar 29 2025
R-4.3-mac-aarch64NOTEMar 29 2025

Exports:cv.hrq_glassohrq_glasso

Dependencies:latticeMASSMatrixMatrixModelsquantregRcppSparseMsurvival